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Abstract: Amoxicillin/clavulanate (Co-Amox), a commonly used antibiotic for the treatment of
bacterial infections, has been associated with drug-induced liver damage. Quercetin (QR), a natu-
rally occurring flavonoid with pleiotropic biological activities, has poor water solubility and low
bioavailability. The objective of this work was to produce a more bioavailable formulation of QR
(liposomes) and to determine the effect of its intraperitoneal pretreatment on the amelioration of
Co-Amox-induced liver damage in male rats. Four groups of rats were defined: control, QR liposomes
(QR-lipo), Co-Amox, and Co-Amox and QR-lipo. Liver injury severity in rats was evaluated for all
groups through measurement of serum liver enzymes, liver antioxidant status, proinflammatory
mediators, and microbiota modulation. The results revealed that QR-lipo reduced the severity of
Co-Amox-induced hepatic damage in rats, as indicated by a reduction in serum liver enzymes and
total liver antioxidant capacity. In addition, QR-lipo upregulated antioxidant transcription factors
SIRT1 and Nrf2 and downregulated liver proinflammatory signatures, including IL-6, IL-13, TNF-«,
NF-«B, and iNOS, with upregulation in the anti-inflammatory one, IL10. QR-lipo also prevented
Co-Amox-induced gut dysbiosis by favoring the colonization of Lactobacillus, Bifidobacterium, and
Bacteroides over Clostridium and Enterobacteriaceae. These results suggested that QR-lipo ameliorates
Co-Amox-induced liver damage by targeting SIRT1/Nrf2 /NF-«B and modulating the microbiota.
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1. Introduction

The liver is a key organ in the process of drug metabolism. In clinical settings, drug-
induced liver injury (DILI) is often reported by physicians [1]. Moreover, DILI is caused
by exposure to pharmaceuticals, herbal remedies, or other xenobiotics. Antibiotics are
frequently accused of causing autoimmune hepatitis, drug-induced liver destruction, and
liver failure following transplantation [2]. Research has shown that amoxicillin-clavulanate
(co-amoxiclav (Co-Amox)) is the causative agent that is often associated with DILI [3]. Co-
Amox is considered a broad-spectrum antibiotic combination composed of the antibiotic
amoxicillin, a semimanufactured antibiotic, and an inhibitor for the enzyme 3-lactamase
called potassium clavulanate. Many drug combinations of amoxicillin and clavulanate
have been released globally over time to improve the ease of dosing, the requirements for
prescribing, and the recommended treatments for more serious infections or those caused
by bacterial resistance to antibiotics [4]. Co-Amox is commonly prescribed for bacterial
infections, including sinusitis, otitis, bacterial bronchitis, and pneumonia [5]. Several
investigations have indicated that Co-Amox-induced hepatotoxicity may occur, despite the
drug’s designated conservation aims [6]. The chance of liver damage and hepatotoxicity
rises when amoxicillin is administered with a beta-lactamase inhibitor, such as clavulanic
acid [7]. In addition, most DILI-related hospitalizations in clinical medicine are caused by
Co-Amox. Co-Amox-induced liver damage could be cholestatic, hepatocellular, and /or
mixed damage with hypersensitivity symptoms in certain circumstances [8].

Furthermore, evidence suggests that reactive oxygen species (ROS)-induced oxidative
damage is crucial in the pathophysiology of Co-Amox-induced hepatocellular injury. When
the endogenous antioxidant system is depleted, free radical scavengers become insufficient,
resulting in the initiation of negative consequences [8]. Sirtuinl (SIRT1) is considered a
significant factor in DILI development and can influence a variety of biological activities
and processes by controlling specific crucial signaling pathways in antistress, autophagy,
and DNA repair. It has been suggested that SIRT1, which is a class III histone deacetylase,
has protective effects on hepatocytes since it is routinely expressed in hepatic tissue [9].
However, it is downregulated as an effect of hepatocellular damage. Likewise, the reduced
hepatic SIRT1 could aggravate DILI primarily by decreasing the nuclear factor E2-related
factor 2 (Nrf2), which significantly boosts the expression of antioxidant enzymes [10].

Substantial ROS production can also induce numerous inflammatory factors that
trigger inflammatory responses in the liver. The NF-kB signaling pathway plays a major
role in the understanding of the mechanism of inflammation [10]. NF-«B is a dimer
protein that aids in the production of various proinflammatory cytokines and induces
inflammation as a result [11]. Consequently, liver disease prevention and protection are
essential. Interest in the potential applications of natural antioxidants as medicinal agents
and immune stimulants has been growing [12,13]. Therefore, increasing antioxidant and
anti-inflammatory potency and targeting SIRT1 may mitigate DILI by reducing oxidative
stress and promoting tissue regeneration.

Microbiota represent a whole organism as they consist of trillions of microbes, com-
posed of different species with diverse taxonomies in humans, including bacteria and
fungi [14]. Regulation of intestinal microbiota ecology is multifactorial through microbial,
host immune response, environment interaction, and genetic susceptibility. Disturbance
in this interaction in genetically susceptible individuals would lead to microbiota dysbio-
sis [14]. Recently, the role of microbiota dysbiosis not only in the induction of liver disease
but also in the fate of disease pathology and therapy has been reported [14,15]. Patients
with coeliac disease have been known to develop liver problems, such as nonalcoholic
fatty liver disease (NAFLD) and primary biliary cirrhosis [16]. Moreover, the translocation
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of buccal microbiota to the gut has been documented in individuals with liver cirrhosis
whose innate immune surveillance is impaired [17]. The overuse of antibiotics leads to
microbiota dysbiosis and accelerates the evolution of antibiotic-resistant bacteria [18]. Mi-
crobiota dysbiosis affects barrier function, microbiota diversity, and metabolite products,
and subsequently impairs the efficiency of hepatoprotective substances [16]. Therefore,
antibiotics are important in the progression of liver disease pathogenicity. In this respect,
introducing natural prebiotics or probiotic substances to be used either as supplements or
antibiotic alternatives to modulate gut microbiota composition is an alternative [19,20]. Pre-
vious studies have addressed the role of natural flavonoids, including QR, in modulating
microbiota and their metabolite composition [21-23].

Quercetin (QR) is a plant flavonoid that is found in a variety of vegetables, fruits, and
seeds, including broccoli, onions, soybeans, and peanuts, as well as drinks created from
plants, such as tea and wine [24]. Due to its pleiotropic biological properties, including its
anti-inflammatory and antioxidant properties, QR has gained more and more attention.
OR has been demonstrated to possess pharmacologically proven neuroprotective [25],
cardioprotective [26], hepatoprotective, and nephroprotective properties [27]. Furthermore,
its potential use in clinical medicine has also recently been reviewed. Additionally, QR
is a prospective liver defender since it can directly neutralize superoxide anion, inhibit
various superoxide-producing enzymes, including xanthine oxidase, and maintain levels
of reduced glutathione [28]. However, despite its medical potential, the clinical use of QR is
severely constrained because of its limited bioavailability and reduced water solubility [29].
Therefore, it is crucial to incorporate QR into drug delivery systems that may enhance its
bioavailability. Liposomes, a well-known lipid-based drug delivery system, have good
biocompatibility, high drug-loading efficiency, controlled release properties, and can poten-
tially encapsulate lipid-soluble [30] and water-soluble [31] molecules. As a result, drugs
that are poorly water-soluble, including QR, are more bioavailable upon formulation into
liposomal systems [32]. QR might induce hepatoprotection through activation of SIRT1,
which is a potent anti-inflammatory factor [33]. The cocrystallized ligand, resveratrol, that
binds to the Sirtl crystal protein (PDB ID: 5BTR), was utilized as a reference to evaluate
the potential of QR to bind SIRT1 via docking [34]. QR can imitate resveratrol’s action
by binding to the activator region of the SIRT1 protein, therefore activating the SIRT1
pathway [35].

However, to our knowledge, there are no reports of the ameliorative effects of QR
nanoliposomes on Co-Amox-induced liver damage in male rats in a SIRT1/Nrf2 /NF-
xB pathway or gut-liver axis-dependent manner. In light of this, the current study was
conducted to assess the protective characteristics of QR in the form of liposomes and to
identify the potential mechanisms of action.

2. Materials and Methods
2.1. Chemicals

Augmentin® (amoxicillin/clavulanate potassium) powder for suspension (Glaxo
Smith Kline, Brantford, UK) was purchased from a public pharmacy in Egypt. Quercetin
(95% purity) and cholesterol were provided by Sigma-Aldrich (St. Louis, MO, USA). Phos-
pholipid 90 G was purchased from Lipoid GmbH (Ludwigshafen, Germany). All other
chemicals, solvents, and reagents were of the highest purity.

2.2. Animals

Twenty-eight male Sprague-Dawley rats weighing between 160 and 170 g were pur-
chased from the experimental animal’s unit of the College of Veterinary Medicine at Zagazig
University (Zagazig, Egypt) for this work. The rats were provided with regular laboratory
commercial feed and water before the experiment, and acclimatized for two weeks at
approximately 25 °C.
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2.3. Preparation of a Nanoliposomal Formulation for Quercetin

Quercetin liposomes (QR-lipo) were developed according to the previously disclosed
solvent injection approach [36,37]. In brief, Phosopholipon 90 G (15.5 mg/mL), cholesterol
(1.5 mg/mL), and QR (3 mg/mL) were dissolved in a sufficient volume of absolute ethanol,
forming the organic phase. The organic phase was kept under heat in a closed system
until used. Ten milliliters (mL) of deionized water were kept under stirring (750 rpm) at
60-70 °C to form the aqueous phase. The organic solution was injected into the aqueous
phase using a syringe (25 G needle). QR-lipo production was indicated by the aqueous
medium turning into a milky mixture during the injection process. The resulting suspen-
sion was maintained at 60 °C for 20-30 min to facilitate ethanol evaporation. The mixture
was then stirred continuously for 1-2 h at room temperature and finally stored at 4 °C until
further characterization. The resultant liposomal suspension phospholipid concentration is
20 mM containing 20 mM% cholesterol. Encapsulation efficiency (%) of QR was estimated
spectrophotometrically (UV-1900, Shimadzu, Kyoto, Japan) at 373 nm after the lysis of lipo-
somal systems as previously described [38]. QR-lipo was evaluated for several parameters,
including particle mean diameter, particle charge, polydispersity index, and transmission
electron microscopy. The in vitro release profile of QR in the form of liposomes was also
examined, as previously reported [30]. An aliquot of QR-lipo was placed in the sample
compartment of a Franz diffusion cell. Water and ethanol were mixed in a ratio of 65:35 in
the release medium and placed in the reservoir compartment to maintain sink conditions
that replicate the in vivo environment [39]. A nitrocellulose membrane with a molecular
weight cutoff of 12 to 14 KDa separated the two compartments. System temperature and
speed were maintained at 37 °C and 50-60 rpm, respectively. Two mL of the dissolving
medium were collected at regular intervals and put through UV analysis at 373 nm to
quantify QR using a standard curve. An equal volume of release medium maintained at
37 °C was introduced in the reservoir compartment.

2.4. Experimental Design

Rats were randomly allocated into four groups (n = 7), control group, quercetin
liposome-treated group (QR-lipo), the Co-Amox treated group, and the Co-Amox group
treated with QR-lipo (Co-Amox and QR-lipo). The liver injury was induced by Co-Amox
oral suspension at a dose of 60 mg/kg for ten consecutive days [8]. Rats in the Co-Amox
and QR-lipo group received daily doses of 5 mg/kg of QR-lipo intraperitoneally for
10 consecutive days, 1 h before receiving an oral suspension of Co-Amox [37]. Rats in the
control group were only given saline solution. Rats in the QR-lipo treatment received daily
intraperitoneal injections of 5 mg/kg of QR-lipo for ten days without ingesting Co-Amox.
Figure 1 is a schematic diagram summarizing the experimental design.

2.5. Sampling

The rats were sacrificed by carbon dioxide exposure and necropsied 24 h after the last
co-amoxiclav treatment. Blood samples were immediately obtained from caudal vena cava
before necropsy. After that, the samples used for biochemical research were stored at room
temperature in order to isolate serum devoid of anticoagulants. The liver was removed
and divided into three parts. After homogenizing a portion in ice-cold phosphate-buffered
saline (PBS), the supernatant was utilized to determine the antioxidant status. The second
portion was utilized to analyze gene expression using real-time PCR. The remaining liver
portion was stored in a 10-percent buffered neutral formalin solution for histological and
immunohistochemical analysis.

2.6. Biochemical Analysis

Alanine transaminase (ALT), aspartate transaminase (AST), and total albumin levels
were determined by the colorimetric method according to kits supplied by Chema Diagnos-
tica (Monsano, Italy), Tulip Diagnostics (Chennai, India), and Agape Diagnostics (Cham,
Switzerland), respectively.
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Figure 1. Schematic diagram summarizing the experimental design.

2.7. Determination of the Antioxidant Status

The sample’s antioxidants were mixed with a predetermined amount of exogenously
generated hydrogen peroxide (H,O,) to calculate the liver supernatant’s overall antioxi-
dant capacity. The antioxidants in the sample neutralize some of the provided hydrogen
peroxide, while the residual H,O; concentration was determined using a calorimetric
enzymatic reaction that involved the production of a colored product from 3,5-dichloro-2-
hydroxybenzenesulfonate. The total antioxidant level was calculated using the following
equation [40]:

(Absorbance of blank) - (absorbance of the sample) x 3.33 (mM/L) D)

Catalase (CAT) activity was estimated calorimetrically in the supernatant by the
method described by Hugo Aebi et al. [40]. A catalase inhibitor is used to stop the reac-
tion between a known quantity of H,O, and CAT after exactly one minute. Horseradish
peroxidase allowed 3,5-dichloro-2-hydroxybenzene sulfonic acid and 4-aminophenazone
to react with the remaining H,O, to produce a chromophore with a color intensity that
was inversely correlated to the amount of catalase in the initial sample [40]. Malondialde-
hyde (MDA) level in liver tissue was determined by the method described by Hiroshi
Ohkawa et al. [41]. A thiobarbituric acid (TBA) reactive product was created when TBA
and MDA reacted at 95 °C for 30 min in an acidic medium to form a colored product that
could be estimated spectrophotometrically at 534 nm. Reduced glutathione (GSH) levels in
liver tissue were estimated by the reduction of 5,5-dithiobis (2-nitrobenzoic acid) (DTNB)
with GSH to form a yellow-colored chromogen [42]. The absorbance of the resulting chro-
mogen at 405 nm was determined using a commercial kit (Bio Diagnostic, Cairo, Egypt),
and it was directly proportional to GSH content.

2.8. mRNA Quantification Using Real-Time RT-PCR

The QIAamp RNeasy Mini kit was used to extract and purify the total RNA from liver
tissue in accordance with the manufacturer’s instructions (Qiagen, Hilden, Germany). Thermo
Fisher Scientific’s Nanodrop 8000 was used to assess the amount of total RNA present. A list
of the primers used in this work was provided by Metabion (Planegg, Germany), as shown
in Table 1. The reaction was carried out in a 25 pL running volume using 10 uL of the
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2x HERA SYBR® Green RT-qPCR Master Mix (Willow Fort, Nottinghamshire, UK), 1 pL
of the RT Enzyme Mix (20x), 0.5 uL of each primer at a concentration of 20 pmol, 5 uL of
RNAse-free water, and 3 pL of RNA template. A step-one real-time PCR instrument was
used to conduct the experiment. The reverse transcription procedure was carried out at
50 °C for 30 min, the cDNA was denatured at 94 °C for 15 min, and then 40 cycles of 95 °C
for 15 s and 60 °C for 30 s were used in the PCR to achieve amplification. According to the
approach outlined by Yuan et al.; [43], in order to evaluate the variation in gene expression
on the RNA of the different samples, the Ct of each sample was calculated using the 2744¢t
method and normalized to those of 3-actin as the housekeeping gene.

Table 1. Primer sequences used for real-time quantitative reverse transcriptase-polymerase chain
reaction (QRT-PCR).

i Y Accession
Genes Primer Sequence (5'-3") Number/References
Forward TGGGCGTGGCAGTGCTCAAC
Keapl NM_057152/[44]
Reverse GCCCATCGTAGCCTCCTGCG
Forward GGTGTTCCAGTGCGCAGAT
Gpx X12367.1/[45]
Reverse AGGGCTTCTATATCGGGTTCGA
Forward TCCTACCCCAACTTCCAATGCTC
- NM_012589.2/[46
IL-6 Reverse TTGGATGGTCTTGGTCCTTAGCC - /1461
Forward CACCTCTCAAGCAGAGCACAG
IL-18 NM_031512.2/[46]
Reverse GGGTTCCATGGTGAAGTCAAC
Forward AAATGGGCTCCCTCTCATCAGTTC
- L19123.1/[4
TNF-ac Reverse TCTGCTTGGTGGTTTGCTACGAC 9123.1/146]
Forward GCAGGACTTTAAGGGTTACTTGG
_ 1.02926.1/[47
IL-10 Reverse GGGGAGAAATCGATGACAGC /1471
Forward AATTGCCCCGGCAT
- XM_342346.4/[48
NF-«B Reverse TCCCGTAACCGCGTA -342346.4/148]
Forward CACCACCCTCCTTGTTCAAC
i 12611 /[4
INOS Reverse CAATCCACAACTCGCTCCAA NM_012611/[49]
Forward CATTGACGTTACCCGCAGAAGAAGC
1 CU928145/[50
Enterobacteriaceae Reverse CTCTACGAGACTCAAGCTTGC /150]
Forward GAGAGGAAGGTCCCCCAC
1 228/[51
Bacteroides Reverse CGCTACTTGGCTGGTTCAG NC_005228/[51]
Forward CTC CTG GAA ACG GGT GG
Bifidobacterium CP001213/[52]
Reverse GGT GTT CTT CCC GAT ATCTAC A
Forward AGCAGTAGGGAATCTTCCA
1 NC_015213/[53
Lactobacillus Reverse CACCGCTACACATGGAG - /1591
Forward AAAGGAAGATTAATACCGCATAA
idi KF929215/[54
Clostridium Reverse ATCTTGCGACCGTACTCCCC 929215/154]
Forward CCTGCTTGCTGATCCACA
-actin V01217.1/[55]
Reverse CTGACCGAGCGTGGCTAG

2.9. Real-Time Quantitative of Bacterial Population Abundance in Cecal Contents

The bacterial DNA was extracted from cecal contents of all rat groups for detection
of microbial abundance of the following bacterial species, including Lactobacillus, Bac-
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teroides, Enterobacteriaceae, Bifidobacterium, and Clostridium, using Strata gene MX3005P
quantitative real-time PCR (RT-PCR). Using QIAamp Fast DNA Stool Mini (Qiagen, Hilden,
Germany), total DNA from a sample of cecal material was extracted. Using a Nanodrop
2000 spectrophotometer (ThermoFisher Scientific Inc.; Waltham, MA, USA), the purity and
concentration of extracted DNA were measured. The samples were frozen at —80 °C for
subsequent quantitative PCR analysis. The sequence of the primers for selected bacterial
species is mentioned in Table 1. Triplicate analyses for PCR amplification were conducted
in a 25 uL reaction containing the following mix: 1 uL of each primer (10 mM), SYBR Green
PCR Master Mix (12.5 uL) (Qiagen, Hilden, Germany), sterile PCR-grade water (9.5 uL)
and specific genomic DNA (2 pL). For the development of standard curves, genomic DNA
obtained from pure bacterial cultures was serially diluted tenfold. The Ct threshold cycle
values were then plotted against the bacterial DNA copy counts to generate standard
calibration curves. The standard curves represented log!'® CFU/gram of the fecal contents
and quantified the bacterial concentrations in each DNA sample.

2.10. Histological Examination of the Rat Liver

After obtaining a sample of rat liver, it was promptly fixed in a 10% buffered neutral
formalin solution for 48 h, dehydrated in progressively increasing alcohol concentrations,
cleaned in xylene, and then embedded in paraffin. Five-um-thick paraffin slices were gen-
erated using a microtome (Leica RM 2155, Milton Keynes, England), and dewaxed sections
were stained with hematoxylin and eosin (H and E) [56]. Finally, Leica® microscope and an
Am Scope® microscope digital camera were used to take all section photos. The follow-
ing evaluations of the lesions scoring system were made: 0 = no discernible histological
changes, 1 = infrequently mild or focal, 2 = multifocal, and 3 = patchy or diffuse) using a
semiquantitative approach [57].

2.11. Immunohistochemical Staining

Deparaffinized 5-pum-thick tissue slices were incubated with 3% HyO, for 30 min,
after which they were incubated for 1 h at 37 °C with anti-Nrf2 (GTX103322, Genetex,
Alton Pkwy Irvine, CA, USA, 1:100) and anti-SIRT1 (ab110304, Abcam, Waltham, MA,
USA, 1:70) reagents, following the manufacturer’s instructions. Cross-sections were treated
with the secondary antibody HRP Envision kit (DAKO) for 20 min after being rinsed
with PBS. The slices were then washed with PBS and given a 10-min incubation with
diaminobenzidine (DAB). They were then dehydrated, cleaned in xylene, counterstained
with hematoxylin, and cover slipped for microscopic analysis. The analysis was completed
using the technique adopted from Elsayed et al. [58]. Seven representative nonoverlapping
fields were randomly selected and scanned in order to determine the relative mean Area
(%) of positive immunohistochemistry expression levels of Nrf2 and SIRT1 in immune-
stained sections for each tissue section per sample. Data were gathered for the investigation
of tissue sections utilizing a Full HD microscopic imaging system (Leica Microsystems
Ltd.; Wetzlar, Germany) run using Leica Application software version 3.7.5 for tissue
section analysis.

2.12. Molecular Docking Analysis

Using computer-based chemistry approaches and Resveratrol as a reference (Co-
crystallized ligand), the probable activity of QR against the SIRT-1 target site was investi-
gated. At first, the target protein was downloaded from the protein data bank (protein Id:
5BTR). All proteins, QR, and resveratrol were prepared, and an MMFF94 force field mini-
mized energy. The key amino acids (Lys444, Asp292, Ala295, Asp298, and Pro212), which
are responsible for the activation of the SIRT1 domain by activator attachment (resveratrol)
were identified [34]. After completing the molecular docking, 20 positions were generated.
The optimal orientations were then obtained, and affinity scores and RMSD values were
compiled [59].
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